Numerical methods for stochastic partial differential equations with multiple scales
نویسندگان
چکیده
A new method for solving numerically stochastic partial differential equations (SPDEs) with multiple scales is presented. The method combines a spectral method with the heterogeneous multiscale method (HMM) presented in [W. E, D. Liu, and E. Vanden-Eijnden, Comm. Pure Appl. Math., 58(11):1544–1585, 2005]. The class of problems that we consider are SPDEs with quadratic nonlinearities that were studied in [D. Blömker, M. Hairer, and G. A. Pavliotis, Nonlinearity, 20(7):1721–1744, 2007.] For such SPDEs an amplitude equation which describes the effective dynamics at long time scales can be rigorously derived for both advective and diffusive time scales. Our method, based on micro and macro solvers, allows to capture numerically the amplitude equation accurately at a cost independent of the small scales in the problem. Numerical experiments illustrate the behavior of the proposed method.
منابع مشابه
Numerical solution of nonlinear SPDEs using a multi-scale method
In this paper we establish a new numerical method for solving a class of stochastic partial differential equations (SPDEs) based on B-splines wavelets. The method combines implicit collocation with the multi-scale method. Using the multi-scale method, SPDEs can be solved on a given subdomain with more accuracy and lower computational cost than the rest of the domain. The stability and c...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملNumerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملNumerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 231 شماره
صفحات -
تاریخ انتشار 2012